Moving Object Tracking using Gaussian Mixture Model and Optical Flow
نویسندگان
چکیده
In this paper, we propose a new tracking method that uses Gaussian Mixture Model (GMM) and Optical Flow approach for object tracking. The GMM approach consists of three different Gaussian distributions, the average, standard deviation and weight respectively. There are two important steps to establish the background for model, and background updates which separate the foreground and background. This paper combines the GMM and Optical Flow object tracking. The advantages of Optical Flow are quick calculations and the disadvantage is a lack of complete object tracking. The advantage of GMM is complete results of the operation the disadvantage is not a complete object tracking, GMM result of the operation complete but disadvantages include computing for a long time with more noise. These two methods can complement each other and image filtering results in the successful tracking of objects. It has variety of uses such as video communication and compression, traffic control, medical imaging and video editing. Keywords— Object Tracking, Gaussian Mixture Model, Optical Flow, Background Subtraction, Moving Objects
منابع مشابه
ارائهی روشی مقاوم نسبت به تغییرات روشنایی در آشکارسازی و ردیابی خودروها درصحنههای ترافیکی
In this paper, according to the detection and tracking of the moving vehicles at junctions, a rapid method is proposed which is based on intelligent image processing. In the detection part, the Gaussian mixture model has been used to obtain the moving parts. Then, the targets have been detected using HOG features extracted from training images, Ada-boost Cascade Classifier and the trained SVM. ...
متن کاملMAPTrack - A Probabilistic Real Time Tracking Framework by Integrating Motion, Appearance and Position Models
In this paper, we present MAPTrack a robust tracking framework that uses a probabilistic scheme to combine a motion model of an object with that of its appearance and an estimation of its position. The motion of the object is modelled using the Gaussian Mixture Background Subtraction algorithm, the appearance of the tracked object is enumerated using a color histogram and the projected location...
متن کاملA Survey on Moving Object Detection Methods in Video Surveillance
Moving Object detection is one of the key step for activity analysis in video surveillance. It provides a classification of the pixels into either foreground or background. Various methods have been proposed by researchers for segmenting out foreground objects in a video sequence, each having their own merits and demerits. A good method should be robust to illumination changes, nonstatic backgr...
متن کاملTarget Detection Algorithm Based on Improved Gaussian Mixture Model
With the traditional Gaussian mixture model being more sensitive to light and failing to react to changes of lighting, a variances and a mean update program under local illumination and global illumination mutations are puts forward respectively in this paper. More specifically, a divergent method to update the mean of each Gaussian distribution in the background model is proposed, following th...
متن کاملMarkov Random Field Modeled Level Sets Method for Object Tracking with Moving Cameras
Object tracking using active contours has attracted increasing interest in recent years due to acquisition of e ective shape descriptions. In this paper, an object tracking method based on level sets using moving cameras is proposed. We develop an automatic contour initialization method based on optical flow detection. A Markov Random Field (MRF)-like model measuring the correlations between ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013